Geometry

Name \qquad
WS 1.1 + (Congruence \& Segment Addition)
Date: \qquad Period: \qquad

Write the Segment Addition Postulate for the points described. Draw a picture to help.

1. S is between D and P
2. J is between S and H
3. C is between Q and R
4. T is between M and N
C is between A and E. For each problem, draw a picture representing the three points and the information given. Solve for indicated.
5. If $A C=24 \mathrm{in}$. and $C E=13 \mathrm{in} ., A E=$ \qquad 6. If $C E=7 \mathrm{in}$. and $A E=23 \mathrm{in} ., A C=$ \qquad .

Find $Q R$ in the following problems. R is between Q and S.
7. If $R S=44.6$ and $S Q=68.4$, find $Q R$.
8. If $R S=33.5$ and $R Q=80$, find $S Q$.

Refer to the figure and the given information to find each measure.
9. Given: $A C=39 \mathrm{~m}$
10. Given the figure and $D G=60 \mathrm{ft}$.

$x=$ \qquad
$A B=$ \qquad
$B C=$ \qquad

$x=$ \qquad
$D O=$ \qquad
$O G=$ \qquad

If U is between T and B, find the value of x and the lengths of the segments. (Hint: Draw a picture for each problem with the given information and then write the equation to solve.)
11. $T U=2 x, U B=3 x+1, T B=21$
12. $T U=4 x-1, U B=2 x-1, T B=5 x$
\qquad
$U B=$ \qquad
$x=$ \qquad
TU = \qquad
$U B=$ \qquad
$T B=$ \qquad

Write an equation for the each:
13. Segment $A B$ is congruent to segment $B C$ \qquad
14. $\overline{X Y} \cong \overline{A B}$ \qquad
15. Point B bisects segment $A C$
16. $2 x+5$ is equal to $4 x-8$ \qquad
17. Point A is the midpoint of segment $P T$ \qquad

For 18-19, suppose $\overline{R S}$ is congruent to $\overline{M N}$. For each set of lengths, solve for x, and find the length of each segment. For 20-21, $\overline{A B} \cong \overline{B C}$.
18. $R S=3 x+17, M N=7 x-15$

$$
\begin{aligned}
& x= \\
& R S= \\
& M N=
\end{aligned}
$$

19. $R S=x+10, M N=2 x+4$
$x=$ \qquad
RS = \qquad
$M N=$ \qquad
20.

$x=$ \qquad
$A B=$ \qquad
$B C=$ \qquad
$A C=$ \qquad
21. $3 x-31$

$x=$ \qquad
$A B=$ \qquad
$B C=$ \qquad $A C=$ \qquad

$x=\quad A B=$ \qquad
$B C=$
$A C=$ \qquad

