Quadratic Formula

Remember the quadratic equation: $a x^{2}+b x+c$ Quadratic Formula: $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Make sure the equation equals zero before finding a, b, c and plugging in.

Example: $x^{2}-2 x-24=0$
Identify the a, b, and c.
$a=1 \quad b=-2 \quad c=-24$

Plug in
$\begin{array}{ll}\text { Simplify all individual parts } & \frac{2 \pm \sqrt{100}}{2} \\ \text { Check the radical: } \sqrt{100}=10 & \frac{2 \pm 10}{2}\end{array}$
Get answers
$\frac{2+10}{2}=6$
AND

$$
\frac{2-10}{2}=-4
$$

Example: $x^{2}+8 x+16=0$
Identify the a, b, and c.
$a=1$
$b=8 \quad c=16$

Plug in

$$
\frac{-(8) \pm \sqrt{(8)^{2}-4(1)(16)}}{2(1)}
$$

Simplify all individual parts

$$
\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-24)}}{2(1)}
$$

Check the radical: $\sqrt{0}=0$
Get answers
$\frac{-8 \pm \sqrt{0}}{2}$
$\frac{-8}{2}$
$\frac{-8}{2}=-4$
$\{-4\}$

Example: $-2 x^{2}+6 x-5=0$
Identify the a, b, and c.
$a=-2$
$b=6$
$C=-5$

Plug in

$$
\begin{gathered}
\frac{-(6) \pm \sqrt{(6)^{2}-4(-2)(-5)}}{2(-2)} \\
\frac{-6 \pm \sqrt{-4}}{-4}
\end{gathered}
$$

Check the radical: $\sqrt{-4}=$ No Real Root
Get answers
No Real Root

Example: $-5=-x^{2}-2 x$

$$
\begin{array}{ll}
\text { Must make equation equal zero. } & -5=-x^{2}-2 x \\
& +5 \\
\text { Add five to both sides } & -x^{2}-2 x+5=0
\end{array}
$$

Identify the a, b, and c.

$$
a=-1 \quad b=-2 \quad c=5
$$

$$
\frac{-(-2) \pm \sqrt{(-2)^{2}-4(-1)(5)}}{2(-1)}
$$

$$
\frac{2 \pm \sqrt{24}}{-2}
$$

$$
\frac{2 \pm 4.899}{-2}
$$

Get answers

$$
\frac{2+4.899}{-2}=3.45 \quad \text { AND } \quad \frac{2-4.899}{-2}=-1.45
$$

