Angles and Parallel Lines \mathcal{N} Notes

(Lessons 3.2 and 3.5)

Goals:

- You will determine the relationship between special angle pairs.
- You will use algebra to find angle measures.

If 2 parallel lines are cut by a transversal, their...			
	\cong	supplementary	Theorem Name
Alternate Interior Angles are			Alternate Interior Angles Theorem
Alternate Exterior Angles are	\ddots		Alternate Exterior Angles Theorem
Consecutive Interior Angles are			Consecutive Interior Angles Theorem
Corresponding Angles are	\checkmark		Corresponding Angles Postulate

Examples:
1.)If the $\mathrm{m} \angle 2=75$, find the measure of all the remaining angles.
corr

$$
3 x+15=4 x-5
$$

$$
20=x
$$

\qquad

$$
\begin{aligned}
C 1 A & +180 \\
6 z+3 & =105 \\
6 z & =102 \\
z & =17
\end{aligned}
$$

$\angle 2$ corr $w / \angle 3 \cong$

$$
\begin{aligned}
& \frac{75}{5}=\frac{5 y}{5} \\
& 15=y
\end{aligned}
$$

3.) Find x and y.

$$
\begin{aligned}
96+2 x & =180 \\
2 x & =84 \\
x & =42
\end{aligned}
$$

$$
\begin{aligned}
94+3 y+44 & =180 \\
3 y+138 & =180 \\
3 y & =42 \\
y & =14
\end{aligned}
$$

Means the reverse of a previous statement.

Converse

If 2 lines are cut by a transversal, and their...

	\cong	supplementary		Theorem Name	
Alternate Interior Angles are	\ddots			Alternate Interior Angles Converse	
Alternate Exterior Angles are					
Consecutive Interior Angles are					
Corresponding Angles are					
Alternate Exterior					
Angles Converse					

Example 1 If $m \angle 1=m \angle 2$, determine which lines, if any, are parallel.

$$
r \| s, \text { Corr L's Converse }
$$

Example 2

 Find x and $m \angle A B C$ so that $m \| n$.$$
\begin{aligned}
3 x+10 & =6 x-20 \\
30 & =3 x
\end{aligned}
$$

Perpendicular Transversal Theorem \& its converse

* If one line is perpendicular to one of $2 \|$ lines, then it is perpendicular to the other line.
* If two lines are perpendicular to the same line, then the lines are parallel.

Goals:

- You can determine the relationship between special angle pairs.
- You can use algebra to find angle measures.

Parking Lot Problem Task:

Your company, Stripe Masters, has been asked to paint the stripes for a parking lot for "High Value Investments".

Here are the conditions:

- You will be drawing a scaled down version of the parking lot to practice the real thing.
- The following tools may be used: side walk chalk, a protractor, and a ruler.
- To do this, you will draw 6 parking spaces... 8 inches between the parallel lines and 12 inch deep spaces. (Real parking space is 8 ft wide and 12 ft long)
- The transversal line CANNOT be perpendicular to the parallel lines.

Keep in mind: What will you do to make sure your lines are truly parallel using only the protractor, ruler, and sidewalk chalk? You cannot just draw two lines and say they look parallel, so they are \cdot

