Determine whether each pair of monomials is equivalent. If not, then why?

1.
$$5\text{m}^2$$
 and $(5\text{m})^2$ $(5\text{m})(5\text{m})$

2.
$$(yz)^4$$
 and y^4z^4 $(y_7)(y_7)(y_7)(y_7)$ $(y_7)^4$
3. $-3a^2$ and $(-3a)^2$ $(-3a)(-3a)$ $(-3a)(-3a)$

3.
$$-3a^2$$
 and $(-3a)^2$ $(-3a)(-3a)$ $(-3a)$

4.
$$2(c^{3})$$
 and $8c^{21}$

$$\mathcal{O}(\mathcal{C}_{2})(\mathcal{C}_{3})(\mathcal{C}_{3})$$

More Polynomials....

Frank and Ernest

Copyright (c) 1995 by Thaves. Distributed from www.thecomics.com.

Goals aligned to the Common Core Standards:

 You will use operations of addition, subtraction, and multiplication on polynomials.

 You will use division to simplify monomials.

Power of a Power

When a power is taken to another power, MOLTIPLY the exponents.

$$(2^3)^4 = 2^{12}$$

$$(8^5)^7 = 8^{35}$$

$$(a^m)^{n} = a^{mn}$$

Simplify expressions.

1.
$$[(2^2)^2]^4$$

$$2.[(3^2)^3]^2$$

Power of a Product

When a product is taken to a power, DISTRIBUTE the power to everything inside the parentheses.

$$(ab)^{m} = a^{m}b^{m}$$

$$(-2x^{2}y)^{3} = -8x^{6}y^{3}$$

$$(-2)^{3}(2)^{2$$

Simplify expressions.

1.
$$(j^5k^7)^4$$

$$(n^3p)^4$$

$$3.[(4r^2t)^3]^2$$

$$4. [(-2xy^2)^3]^2$$

To simplify a monomial expression.

- 1. Make sure that each variable base appears exactly once
- 2. There are no powers of powers (no exponents outside of parentheses)
- 3. All fractions are in simplest form

Things to Remember

When multiplying two powers that have the same base, exponents.	
When a power is taken to another power,exponents.	_ th
When a product is taken to a power, the power to everything inside the parentheses.	
A negative number to an even exponent becomes	
A negative number to an odd exponent becomes	

Simplify expressions.

1. $(-2a^6)(6a^6)$

2. $(9w^2x^8)(w^6x^4)$

Simplify expressions.

4.
$$(5a^{2}b^{3}c^{4})(2a^{3}b^{4}c^{2})^{2}$$
 $(2)^{2}(a^{3})^{2}(b^{4})^{2}(c^{2})^{2}$
 $(2)^{2}(a^{3})^{2}(b^{4})^{2}(c^{2})^{2}$
 $(2)^{3}(a^{3})^{2}(b^{4})^{2}(c^{2})^{2}$
 $(2)^{3}(a^{3})^{2}(b^{4})^{2}(c^{2})^{2}$
 $(2)^{3}(a^{3})^{2}(b^{4})^{2}(c^{2})^{2}$
 $(2)^{3}(a^{3})^{2}(b^{4})^{2}(c^{2})^{2}$
 $(2)^{3}(a^{3})^{2}(b^{4})^{2}(c^{2})^{2}$
 $(2)^{3}(a^{3})^{2}(b^{4})^{2}(c^{2})^{2}$
 $(2)^{3}(a^{3})^{2}(b^{4})^{2}(c^{2})^{2}$
 $(2)^{3}(a^{3})^{2}(b^{4})^{2}(c^{2})^{2}$

5.
$$(-3x^{2}y^{5})^{3}(2x^{4}y^{2})(3xy)$$
 $(-27x^{4})^{5}(2x^{4}y^{2})(3xy)$

Division Property of Exponents

When you divide two things with the same base, you _______ your exponents.

$$\frac{7^{10}}{7^8}$$

$$\frac{x^5y^9}{x^7y^5}$$

$$\left(\frac{3bc^{3}}{4b}\right)^{2} \frac{(3)^{2}(b)(3)^{2}}{(4)^{3}(b)^{3}}$$

Negative Property of Exponents

When you have a negative exponent in the numerator, move it to the _____ to make it positive and vice versa.

$$4^{-2} = \frac{1}{4^2} = \frac{1}{16}$$

$$\frac{1}{3^{-3}} = 3^3 = 27$$

$$x^{-6}z^{8}$$

$$\frac{a^3 b}{a^{-2}b^9 c^{-7}}$$

Zero Property of Exponents

Anything to the zero power always equals

$$\frac{5^2}{5^2}$$

(6a)⁰

 $(2000a^3 b^5 c^7 d)^0$

$$\frac{(3a^3bc^2)^2}{18a^2b^3c^4}$$

