Geometric Sequences

SPI 3102.1.1: You will be able to interpret patterns found in sequences using variables.

A sequence is a set of numbers in a specific order. Each number in the sequence is a term.
What is a geometric sequence??

- A sequence where each term is found by multiply the previous term by a constant. The constant being multiplied is called the common ratio (r). (Can't be found by using a 0 and $\mathrm{r} \neq 0$ or 1)

Common Ratio:

$$
r=\frac{\text { term }}{\text { previous term }}
$$

Example: 2, 6, 10, 14, 18, \ldots

$$
+4 \quad+4 \quad+4 \quad+4
$$

Since the difference between each number is +4 , this is an arithmetic sequence and the common difference in 4 .

Example 1: Determine whether each sequence is geometric. Explain.

a. $1, \underbrace{5}, \underbrace{25}, \underbrace{125}, \cdots$

Geometric; Common ratio: 5 (could also be found by $\frac{(\text { term }) 5}{(\text { previous term }) 1}=5$)
b. $0,5,10,15,20, \ldots$

Not geometric; added 5 each time.
c. $1,-1,1,-1,1, \ldots$

Geometric; Common ratio: -1 (could also be found by $\frac{-1}{1}=-1$)
d. 1000, 200, 40, 8, ...
$\times \frac{1}{5} \quad \times \frac{1}{5} \quad \times \frac{1}{5}$
Geometric; Common Difference: $\frac{1}{5}$ (could also be found by $\frac{200}{1000}=\frac{1}{5}$)
e. $\underbrace{56,}_{x-\frac{1}{2}} \underbrace{14}_{x-\frac{1}{2}}, \cup_{x-\frac{1}{2}}^{-7, \ldots}$

Geometric; Common Difference: $-\frac{1}{2}$ (could also be found by $\frac{-28}{56}=-\frac{1}{2}$)

Example 2: Find the next three terms.
a. $4,-8,16, \ldots$ To get from number to number multiply by -2 each time.

Your sequence would be: $4,-8,16, \mathbf{- 3 2}, 64,-128$
b. $60,72,86.4, \ldots \quad$ To get from number to number multiply $\frac{6}{5}$ each time.
c. $64,48,36, \ldots$ To get from number to number you multiply $\frac{3}{4}$.

Your sequence would be: $64,48,36, \mathbf{2 7}, \mathbf{2 0 . 2 5}, \mathbf{1 5 . 1 8 7 5}$

Practice Problems!!! Book page 581 \#16, 17, 19 (determine if the sequence is geometric or not geometric) and book page 581 \#20, 23

Formula for the nth Term of a Geometric Sequence

$$
a_{n}=a_{1}(r)^{n-1}
$$

a_{n} : $\mathrm{n}^{\text {th }}$ term (what you are looking for)
a_{1} : first term
r: common ratio
n : what term you are looking for

Example 3:

A) Write an equation for the nth term of the geometric sequence: $3,-12,48,-192, \ldots$

$$
\begin{array}{ll}
\mathrm{a}_{1}=3 & \begin{array}{l}
\text { (because it's the first term) } \\
\mathrm{r}=-4
\end{array} \\
\\
a_{n}=a_{1}(r)^{n-1} & \\
a_{n}=3(-4)^{n-1} & \text { Plug } 3 \text { in for } a_{1} \text { and }-4 \text { for } r
\end{array}
$$

B) Find the $7^{\text {th }}$ term

$$
\begin{array}{ll}
a_{n}=3(-4)^{n-1} & \\
a_{7}=3(-4)^{7-1} & \text { Remember } \mathrm{n} \text { is what you are looking for; so plug in } 7 \text { for } \mathrm{n} \\
a_{7}=3(-4)^{6} & \text { Simplify: Subtract exponent } \\
a_{7}=3(4096) & \text { Simplify: Find }(-4)^{6} . \text { Make sure to put }-4 \text { in parentheses to get } 4096 . \\
a_{7}=12288 & \text { Simplify: Multiply } \\
\text { OR } &
\end{array}
$$

Since the common ratio is -4 , you can multiply -4 to the sequence until you reach the $7^{\text {th }}$ term.

\qquad
\qquad ,

$3,-12,48,-192, \underline{768},-\underline{3072}, \underline{12288}$
So, $a_{7}=12288$

Example 4:

A) Write an equation for the nth term of the arithmetic sequence: $7,21,63, \ldots$

$$
\begin{array}{rlrl}
\mathrm{a}_{1}=7 & & \text { (because it's the first term) } \\
\mathrm{r}=3 & & \text { (because multiply } 3 \text { each time) } \\
a_{n} & =a_{1}(r)^{n-1} & & \\
a_{n}=7(3)^{n-1} & & \text { Plug } 7 \text { in for } a_{1} \text { and } 3 \text { for } r
\end{array}
$$

C) Find the $9^{\text {th }}$ term
$a_{n}=7(3)^{n-1}$
$a_{7}=7(3)^{8-1} \quad$ Remember n is what you are looking for; so plug in 8 for n
$a_{7}=7(3)^{7} \quad$ Simplify: Subtract exponent
$a_{7}=7(2187) \quad$ Simplify: Find (3) ${ }^{7}$.
$a_{7}=15309 \quad$ Simplify: Multiply

OR

Since the common ratio is 3 , you can multiply 3 to the sequence until you reach the $8^{\text {th }}$ term.

7, 21, 63, \qquad , \qquad
\qquad ,___

$7,21,63,189,567,1701, \underline{5103}, 15309$
So, $a_{8}=15309$

Practice Problems!! Book page 581 \#28, 29 (write the equation $1^{\text {st }}$, then find the term.)
Complete this on the same sheet as your previous problems.

