Geometric Sequences

SPI 3102.1.1: You will be able to interpret patterns found in sequences using variables.

A *sequence* is a set of numbers in a specific order. Each number in the sequence is a *term*.

What is a geometric sequence??

• A sequence where each term is found by multiply the previous term by a constant. The constant being multiplied is called the *common ratio (r)*. (Can't be found by using a 0 and $r \neq 0$ or 1)

Common Ratio:

$$r = \frac{term}{previous \ term}$$

Example:

2, 6, 10, 14, 18, ...

Since the difference between each number is +4, this is an arithmetic sequence and the common difference in 4.

Example 1: Determine whether each sequence is geometric. Explain.

a. 1, 5, 25, 125, 625, ... ×5 ×5 ×5 ×5 ×5 b. 0, 5, 10, 15, 20, ... +5 +5 +5 +5 Not geometric; added 5 each time. c. 1, -1, 1, -1, 1, ... ×-1 ×-1 ×-1 ×-1 d. 1000, 200, 40, 8, ... $\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}$ Geometric; Common Difference: $\frac{1}{5}$ (could also be found by $\frac{200}{1000} = \frac{1}{5}$) e. 56, -28, 14, -7, ... $\frac{1}{2} \times -\frac{1}{2} \times -\frac{1}{2}$ Geometric; Common Difference: $-\frac{1}{2}$ (could also be found by $\frac{-28}{56} = -\frac{1}{2}$)

Example 2: Find the next three terms.

a. 4, -8, 16, To get from number to number multiply by -2 each time.

Your sequence would be: 4, -8, 16, -32, 64, -128

b. 60, 72, 86.4, ... To get from number to number multiply $\frac{6}{5}$ each time.

Your sequence would be: 60, 72, 86.4, 103.68, 124.416, 149.2992

c. 64, 48, 36,... To get from number to number you multiply $\frac{3}{4}$.

Your sequence would be: 64, 48, 36, 27, 20.25, 15.1875

Practice Problems!!! Book page 581 #16, 17, 19 (determine if the sequence is geometric or not geometric) and book page 581 #20, 23

Formula for the nth Term of a Geometric Sequence

$$a_n = a_1(r)^{n-1}$$

a_n: nth term (what you are looking for)
a₁: first term
r: common ratio
n: what term you are looking for

Example 3:

A) Write an equation for the nth term of the geometric sequence: 3, -12, 48, -192, ...

a1= 3	(because it's the first term)
r = -4	(because multiply -4 each time)

$a_n = a_1(r)^{n-1}$		
$a_n = 3(-4)^{n-1}$	Plug 3 in for a_1	and -4 for r

B) Find the 7th term

$a_n = 3(-4)^{n-1}$	
$a_7 = 3(-4)^{7-1}$	Remember n is what you are looking for; so plug in 7 for n
$a_7 = 3(-4)^6$	Simplify: Subtract exponent
$a_7 = 3(4096)$	Simplify: Find $(-4)^6$. Make sure to put -4 in parentheses to get 4096.
$a_7 = 12288$	Simplify: Multiply

OR

Since the common ratio is -4, you can multiply -4 to the sequence until you reach the 7th term.

3, -12, 48, -192, ____, ____, ____, ____

3, -12, 48, -192, <u>768</u>, -<u>3072</u>, **12288**

So, $a_7 = 12288$

Example 4:

A) Write an equation for the nth term of the arithmetic sequence: 7, 21, 63, ...

a ₁ = 7	(because it's the first term)
r = 3	(because multiply 3 each time)
$a_n = a_1(r)^{n-1}$	
$a_n = 7(3)^{n-1}$	Plug 7 in for a_1 and 3 for r

C) Find the 9th term

$a_n = 7(3)^{n-1}$	
$a_7 = 7(3)^{8-1}$	Remember n is what you are looking for; so plug in 8 for n
$a_7 = 7(3)^7$	Simplify: Subtract exponent
$a_7 = 7(2187)$	Simplify: Find (3) ⁷ .
$a_7 = 15309$	Simplify: Multiply

OR

Since the common ratio is 3, you can multiply 3 to the sequence until you reach the 8th term.

So, $a_8 = 15309$

Practice Problems!! Book page 581 #28, 29 (write the equation 1st, then find the term.) Complete this on the same sheet as your previous problems.