Remember: When given $(x-2)(x+2)$
You FOIL and get $x^{2}+2 x-2 x-4$
Then simplify and get $x^{2}-4$ because the middle terms cancel.
Notice, both x^{2} and 4 are perfect squares. We will factor using opposite signs so the middle terms cancel.

Example 1: $x^{2}-81$

$$
(x-9)(x+9)
$$

Example 2: $x^{2}-144$

$$
(x-12)(x+12)
$$

Example 3: $4 \mathrm{x}^{2}-25$

$$
(2 x-5)(2 x+5)
$$

Example 4: $121 x^{2}-169$

$$
(11 x-13)(11 x+13)
$$

Example 5: $36-x^{4}$
$\left(6-x^{2}\right)\left(6+x^{2}\right)$

Example 6: $196-100 x^{4}$

$$
\left(14-10 x^{2}\right)\left(14+10 x^{2}\right)
$$

* 36 and x^{4} are both perfect squares
*6 is the square root of 36 and x^{2} is the square root of x^{4}
*81 is a perfect square; we have an x^{2} a minus and a perfect square *9 is the square root of 81
*144 is a perfect square; we have an x^{2} a minus and a perfect square *12 is the square root of 144
*4 and 25 are both perfect squares
*2 is the square root of 4 and 5 is the square root of 25
*121 and 169 are both perfect squares
*11 is the square root of 121 and 13 is the square root of 169
* 196,100 , and x^{4} are all perfect squares
*14 is the square root of 196,10 is the square root of 100 , and x^{2} is the square root of x^{4}

