Factoring Difference of Squares Notes

<u>Remember:</u> When given $(x - 2)(x + 2)$ You FOIL and get $x^2 + 2x - 2x - 4$ Then simplify and get $x^2 - 4$ because the middle terms cancel.	
Notice, both x ² and 4 are perfect squares. We will factor using opposite signs so the middle terms cancel.	
Example 1: $x^2 - 81$ (x - 9)(x + 9)	*81 is a perfect square; we have an x ² a minus and a perfect square *9 is the square root of 81
Example 2: $x^2 - 144$ (x - 12)(x + 12)	*144 is a perfect square; we have an x ² a minus and a perfect square *12 is the square root of 144
Example 3: $4x^2 - 25$ (2x - 5)(2x + 5)	*4 and 25 are both perfect squares*2 is the square root of 4 and 5 is the square root of 25
Example 4: 121x ² – 169 (11x – 13)(11x + 13)	*121 and 169 are both perfect squares*11 is the square root of 121 and 13 is the square root of 169
Example 5: $36 - x^4$ (6 - x^2)(6 + x^2)	* 36 and x^4 are both perfect squares *6 is the square root of 36 and x^2 is the square root of x^4
Example 6: $196 - 100 x^4$ $(14 - 10x^2)(14 + 10x^2)$	 * 196, 100, and x⁴ are all perfect squares *14 is the square root of 196, 10 is the square root of 100, and x² is the square root of x⁴