EXPONENTIAL GROWTH AND DECAY

What is exponential growth?

*A quantity grows exponentially if it increases by the same percent each time.
*The higher the rate of growth, the steeper the curve.
*words that mean growth: increase, appreciate, gains value

Exponential Growth Model

$y=C(1+r)^{t}$
$\mathrm{t}=$ time period
C= initial amount (starting amount)
$r=$ rate as a decimal

Examples:

Goals Algined to the Common Core Standards

- You will be able to understand the constraints of an exponential function.
- You will be able to identify an exponentia function in a real-life situation.

In 1971, there were 294,105 females participating in high school sports. Since then, that number has increased at an average of 8.5% per year. How many females will participate in sports in 2011?

$$
t=40 \quad C=294,105 \quad r=.085
$$

$$
y=294,105(1+.085)^{40}
$$

$$
y=7685850.547 \quad \text { so } 7,685,850 \text { girls }
$$

Mrs. Griffee received a job as a teacher with a starting salary of $\$ 34,000$. According to her contract, she will receive a 1.5% increase in her salary every year. How much will Mrs. Griffee earn in 7 years?

$$
t=7 \quad C=34,000 \quad r=.015
$$

$$
y=34,000(1+.015)^{7}
$$

$$
y=37,734.727 \quad \text { so } \$ 37,734.73
$$

How much must you deposit into an account with a rate of 8% for 6 years in order to have about $\$ 795$?

$$
\mathrm{Y}=\$ 795 \quad \mathrm{t}=6 \quad \mathrm{r}=.08
$$

$$
\begin{aligned}
& 795=\mathbf{C}(1+.08)^{6} \\
& 795=\mathbf{C}(1.5869)
\end{aligned}
$$

$$
500.977 \text { = C so approximately } \$ 501
$$

What is exponential decay?

*A quantity decays exponentially if it decreases by the same percent each time.
*The higher the rate of decay, the steeper the curve.
*words that mean decay: decrease, depreciate, loses value


```
Exponential Decay Model
y = C(1-r)t
t = time period
C= intial (starting amount)
r= rate as a decimal
```


Examples:

A business earned $\$ 85,000$ in 1990. Then its earnings decreased by 2% each year for 10 years. What were the earnings in 10 years?

$$
\begin{array}{lll}
t=10 & C=85,000 & r=.02 \\
y=85,000(1-.02)^{10} & & \\
y=69451.188 & \text { so } \$ 69,451.19 &
\end{array}
$$

A farmer buys a tractor for \$50,000. If the tractor depreciates 10% per year, find the value of the tractor in 7 years.

$$
\begin{array}{lll}
\mathrm{t}=7 & \mathrm{C}=50,000 & \mathrm{r}=.10 \\
y=50,000(1-.1)^{7} & \\
y=23914.845 &
\end{array}
$$

Compound Interest

* Compound interest is interest added to the principal of a deposit or loan so that the added interest also earns interest from then on.

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

A = final amount
$\mathrm{P}=$ intial (starting amount)
$r=$ rate as a decimal
$\mathrm{n}=$ number of times compounded in a year
$\mathrm{t}=$ time period

Examples:

Kenzie's parents invested $\$ 14,000$ at 6% per year compounded monthly. How much money will there be in the account after 10 years?

$$
\begin{aligned}
& \mathrm{P}=\$ 14,000 \quad \mathrm{r}=.06 \quad \mathrm{n}=12 \quad \mathrm{t}=10 \\
& y=14,000\left(1+\frac{.06}{12}\right)^{12 \cdot 10} \\
& y=14,000(1.819) \\
& y=25,471.554 \quad \text { so } \$ 25,471.55
\end{aligned}
$$

You deposit $\$ 500$ in an account that pays 4\% interest compounded yearly. What is the balance after 5 years?

$$
\begin{array}{lll}
\mathrm{P}=\$ 500 \quad \mathrm{r}=.04 & \mathrm{n}=1 \\
y=500\left(1+\frac{.04}{1}\right)^{1 \cdot 5} \\
y & =500(1.21665) \\
y=608.326 & \text { so } \$ 608.33
\end{array}
$$

Determine the amount of an investment if \$300 is invested at an interest rate of 3.5\% compounded monthly for 22 years.
$A=\$ 300$
$r=.035$
$\mathrm{n}=12$
$t=22$
$300=P\left(1+\frac{.035}{12}\right)^{12 \cdot 22}$
$300=P(2.1573)$
$139.063=P$
so \$139. 06

