Arithmetic Sequences

SPI 3102.1.1: You will be able to interpret patterns found in sequences using variables.

A *sequence* is a set of numbers in a specific order. Each number in the sequence is a *term*.

What is an arithmetic sequence??

• A sequence where the difference between the terms is constant. The difference between terms is called the *common difference (d)*.

Example:

Since the difference between each number is +4, this is an arithmetic sequence and the common difference in 4.

Example 1: Determine whether each sequence is arithmetic. Explain.

Example 2: Find the next three terms.

a. 12, 9, 6, 3, To get from number to number you subtract 3 each time.

Your sequence would be: 12, 9, 6, 3, 0, -3, -6

b. -2, 2, 6, 10, ... To get from number to number you add 4 each time.

Your sequence would be: -2, 2, 6, 10, 14, 18, 22

c. 9.5, 11.0, 12.5, 14.0 To get from number to number you add 1.5

Your sequence would be: 9.5, 11.0, 12.5, 14.0, 15.5, 17.0, 18.5

Formula for the nth Term of an Arithmetic Sequence

 $a_n = a_1 + (n - 1)d$

a_n: nth term (what you are looking for)
a₁: first term
d: common difference
n: what term you are looking for

Example 3:

A) Write an equation for the nth term of the arithmetic sequence: -12, -8, -4, 0, ...

a ₁ = -12	(because it's the first term)
d = +4	(because add 4 each time)

$a_n = a_1 + (n - 1)d$	
$a_n = -12 + (n - 1)4$	Plug -12 in for a_1 and 4 for d
$a_n = -12 + 4n - 4$	Distribute 4 to (n – 1)
$a_n = 4n - 16$	Add like terms: -12 - 4

B) Find the 6th term

$a_n = 4n - 16$	
$a_6 = 4(6) - 16$	Remember n is what you are looking for; so plug in 6 for n
$a_6 = 24 - 16$	Simplify: Multiply
$a_6 = 8$	Simplify: Subtract

OR

Since the common difference is +4, you can add 4 to the sequence until you reach the 6th term.

-12, -8, -4, 0, ____, ____ $a_1, a_2, a_3, a_4, a_5, a_6$ +4 +4 +4 +4 +4 12, -8, -4, 0, 4, 8 So, $a_6 = 8$

Example 4:

A) Write an equation for the nth term of the arithmetic sequence: 3, -10, -23, -36, ...

a ₁ = 3	(because it's the first term)
d = -13	(because subtract 13 each time)

$a_n = a_1 + (n - 1)d$	
$a_n = 3 + (n - 1)(-13)$	Plug 3 in for a_1 and -13 for d (notice since 13 is negative I used parentheses)
$a_n = 3 - 13n + 13$	Distribute -13 to (n – 1)
$a_n = -13n + 16$	Add like terms: 3 + 13

B) Find the 8th term

$a_n = -13n + 16$	
$a_8 = -13(8) + 16$	Remember n is what you are looking for; so plug in 8 for n
$a_8 = -104 + 16$	Simplify: Multiply
$a_8 = -88$	Simplify: Add

OR

Since the common difference is -13, you can subtract 13 to the sequence until you reach the 8th term.

Practice Problems!! Book page 191 #18, 20 (Do not graph. Only write equation and find 5th term.) Complete this on the same sheet as your previous problems.