Arithmetic Sequences

SPI 3102.1.1: You will be able to interpret patterns found in sequences using variables.

A sequence is a set of numbers in a specific order. Each number in the sequence is a term.
What is an arithmetic sequence??

- A sequence where the difference between the terms is constant. The difference between terms is called the common difference (d).

Example:

Since the difference between each number is +4 , this is an arithmetic sequence and the common difference in 4 .

Example 1: Determine whether each sequence is arithmetic. Explain.

a. $\underbrace{0,}_{+5} \underbrace{5}_{+5} 10, \underbrace{15}_{+5}, \underbrace{20}_{+5}, \ldots$ Arithmetic; Common Difference: 5
b. $33,29,25,21,17, \ldots$ $\begin{array}{llll}-4 & -4 & -4 & -4\end{array}$

Arithmetic; Common Difference: -4
c. $\frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \frac{13}{16}, \ldots$
$\underbrace{}_{+\frac{1}{8}+\frac{1}{8}+\frac{1}{16}}$
Not Arithmetic
d. $\underbrace{3} \underbrace{5, ~ 7} \underbrace{9} 11, \ldots$
$+2+2+2+2+2 \quad$ Arithmetic; Common Difference: 2
e. $\cup^{2} \underbrace{3,} \underbrace{8, \ldots}$
$+1+1$ +2 +3

Not Arithmetic

Example 2: Find the next three terms.

a. $12,9,6,3, \ldots$ To get from number to number you subtract 3 each time.

Your sequence would be: $12,9,6,3,0,-3,-6$
b. $-2,2,6,10, \ldots$ To get from number to number you add 4 each time.

Your sequence would be: $-2,2,6,10,14,18,22$
c. $9.5,11.0,12.5,14.0$ To get from number to number you add 1.5

Your sequence would be: $9.5,11.0,12.5,14.0,15.5,17.0,18.5$

Formula for the nth Term of an Arithmetic Sequence

$$
a_{n}=a_{1}+(n-1) d
$$

a_{n} : $\mathrm{n}^{\text {th }}$ term (what you are looking for)
a_{1} : first term
d: common difference
n: what term you are looking for

Example 3:

A) Write an equation for the nth term of the arithmetic sequence: $-12,-8,-4,0, \ldots$

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{a}_{1}=-12 & \\
\mathrm{~d}=+4 & \\
& \text { (because it's the first term) } \\
\text { (because add } 4 \text { each time) }
\end{array} \\
a_{n}=a_{1}+(n-1) d & \\
a_{n}=-12+(n-1) 4 & \\
a_{n}=-12+4 n-4 & \text { Plug }-12 \text { in for } a_{1} \text { and } 4 \text { for } d \\
\boldsymbol{a}_{\boldsymbol{n}}=\mathbf{4 n}-\mathbf{1 6} & \\
\text { Distribute } 4 \text { to }(\mathrm{n}-1) \\
\text { Add like terms: }-12-4
\end{array}
$$

B) Find the $6^{\text {th }}$ term

$$
\begin{array}{ll}
a_{n}=4 n-16 & \\
a_{6}=4(6)-16 & \text { Remember } \mathrm{n} \text { is what you are looking for; so plug in } 6 \text { for } \mathrm{n} \\
a_{6}=24-16 & \text { Simplify: Multiply } \\
\boldsymbol{a}_{\mathbf{6}}=\mathbf{8} & \text { Simplify: Subtract }
\end{array}
$$

OR

Since the common difference is +4 , you can add 4 to the sequence until you reach the $6^{\text {th }}$ term.

$12,-8,-4, \quad 0, \quad 4, \quad 8$
So , $a_{6}=8$

Example 4:

A) Write an equation for the nth term of the arithmetic sequence: $3,-10,-23,-36, \ldots$

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{a}_{1}=3 & \\
\mathrm{~d}=-13 & \\
& \text { (because it's the first term) } \\
\text { (because subtract } 13 \text { each time) }
\end{array} \\
a_{n}=a_{1}+(n-1) d & \\
a_{n}=3+(n-1)(-13) & \\
a_{n}=3-13 n+13 & \\
\boldsymbol{a}_{\boldsymbol{n}}=-\mathbf{1 3 n}+\mathbf{1 6} & \\
\text { Plug } 3 \text { in for } a_{1} \text { and }-13 \text { for } d \text { (notice since } 13 \text { is negative } \mathrm{I} \text { used parentheses) } \\
\text { Add like terms: } 3+13 \text { to }(\mathrm{n}-1)
\end{array}
$$

B) Find the $8^{\text {th }}$ term

$$
a_{n}=-13 n+16
$$

$$
a_{8}=-13(8)+16
$$

Remember n is what you are looking for; so plug in 8 for n

$$
a_{8}=-104+16
$$ Simplify: Multiply

$$
a_{8}=-88
$$

Simplify: Add

OR

Since the common difference is -13 , you can subtract 13 to the sequence until you reach the $8^{\text {th }}$ term.

$3,-10,-23,-36,-49,-62,-75,-88 \quad$ So,$a_{8}=-88$

Practice Problems!! Book page 191 \#18, 20 (Do not graph. Only write equation and find $5^{\text {th }}$ term.) Complete this on the same sheet as your previous problems.

