Goals:
You will draw dilations using a ruler.

You will draw dilations in the
coordinate plane.

You will identify a dilation as an enlargement or reduction and find the scale factor.

9.6 Dilation

(and 7.6 similarity transformations)

Dilation: a transformation that may change the size of a figure.
$k=$ scale factor
enlargement,
reduction, or
congruent

Remember how to draw a dilation:
Use a scale factor of 3 .

Reduction
Use a scale factor of $\frac{2}{3}$.

A. Determine whether the dilation from Figure Ato
Figure R is an enlargement or a reduction Then find the scale factor of the dilation.

$$
\frac{3}{6}=\left(\frac{1}{2}\right)
$$

B. Determine whether the dilation from Figure Ato Figure- B is anlargement or a reduction. Then find the scale factor of the dilation.

$$
3^{\ell}
$$

COORDINATE GEOMETRY Find the image of each polygon, given the vertices, after a dilation centered at the origin with a scale factor of 2 . Then graph a dilation centered at the origin with a scale factor of $\frac{1}{2}$.

$$
J(2,4), \overline{K(4,4), P(3,2)}
$$

$$
A^{\prime} B^{\prime}=|k|(A B)
$$

In other words,

$$
k=\frac{\text { image }}{\text { preimage }}
$$

PUPPETS To create the illusion of a "life-sized" image, puppeteers sometimes use a light source to show an enlarged image of a puppet projected on a screen or wall. Suppose that the distance between a light source L^{\prime} and the puppet is 24 inches (LP). To what distance PP' should you place the puppet from the screen to create a 49.5-inch tall shadow (I'M') from a 9 -inch puppet?

$$
\begin{array}{r}
\left.\frac{14.5}{9}=5.5\right) \\
24 \cdot 5.5=132
\end{array}
$$

