8.2 Pythagorean Theorem and Its Converse

Pythagorean Theorem: In a right Δ
$9^{2}+x^{2}=15^{2}$
$81+x^{2}=225$
-81
$a^{2}+b^{2}=c^{2}$
legs
hypotenuse

Converse of Pythagorean Theorem:
If $a^{2}+b^{2}=c^{2}$, then it is a right triangle

Pythagorean Triple:

Non-zero whole numbers which satisfies $a^{2}+b^{2}=c^{2}$.

$3,4,5$	$\mathbf{5 , 1 2}, 13$	$\mathbf{8}, 15,17$	$\mathbf{7 , 2 4}, 25$
$6,8,10$	$10,24,26$	$16,30,34$	$14,48,50$
$9,12,15$	$15,36,39$	$24,45,51$	$21,72,75$
$3 x, 4 x, 5 x$	$5 x, 12 x, 13 x$	$8 x, 15 x, 17 x$	$7 x, 24 x, 25 x$

Pythagorean Inequality Theorems
If $c^{2}<a^{2}+b^{2}$, then $\triangle A B C$ is acute.

If $c^{2}>a^{2}+b^{2}$, then $\triangle A B C$ is obtuse.

Determine whether each set of measures can be the sides of a triangle. If it is classify it as obtuse, acute, or right.
a.) $9,12,15$

$$
\begin{gathered}
9+12>15 \\
y \text { yes }
\end{gathered}
$$

$$
\begin{aligned}
9^{2}+12^{2} & =15^{2} ? \\
81+144 & =225 \\
225 & =225 \text { yes }
\end{aligned}
$$

b.) $10,11,13 \quad|0+1|>13$
c.) $7,8,14 \longrightarrow$ obtuse $^{\text {yes }}$

$$
10^{2}+11^{2}=13^{2} ?
$$

d.) $14,18,33$ not $\Delta 14+18 \ngtr 33$
f.) $4 \sqrt{3}, 4$, and 8 6.9

$$
\text { yes, } \quad \begin{aligned}
& (4 \sqrt{3})^{2}+4^{2}=8^{2} \\
& 4^{2} \sqrt{3}^{2}+16=64 \\
& 16 \cdot 3+16=64 \\
& 48+16=64
\end{aligned}
$$

Go back and label the Pythagorean triples.

