8.2 Pythagorean Theorem and Its Converse

Non-zero whole numbers which satisfies $a^2 + b^2 = c^2$.

3, 4, 5	5, 12, 13	8, 15, 17	7, 24, 25
6, 8, 10	10, 24, 26	16, 30, 34	14, 48, 50
9, 12, 15	15, 36, 39	24, 45, 51	21, 72, 75
3x, 4x, 5x	5x, 12x, 13x	8x, 15x, 17x	7x, 24x, 25x

Pythagorean Inequality Theorems

If $c^2 < a^2 + b^2$, then $\triangle ABC$ is acute.

If $c^2 > a^2 + b^2$, then $\triangle ABC$ is obtuse.

Determine whether each set of measures can be the sides of a triangle. If it is classify it as obtuse, acute, or right.

