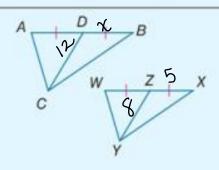

7.5 PARTS OF SIMILAR TRIANGLES

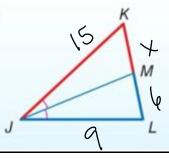
 $\sim \Delta' s$ have corresponding altitudes proportional to the corresponding sides.



 $\sim \Delta's$ have corresponding \angle bisectors proportional to the corresponding sides.

le = 21 9 x= 126 x=14

 $\sim \Delta' s$ have corresponding medians proportional to the corresponding sides.


 $\frac{12}{8} - \frac{\times}{5}$ $\frac{12}{8} - \frac{12}{5}$

Triangle Angle Bisector

An angle bisector in a triangle separates the opposite side into two segments that are proportional to the lengths of the other two sides.

Example If \overline{JM} is an angle bisector of $\triangle JKL$,

then
$$\frac{KM}{LM} = \frac{KJ}{LJ}$$
. $\stackrel{\text{segments with vertex } K}{\longleftarrow}$ segments with vertex L

$$9x = 90$$