7.4 Parallel lines and Proportional Parts

Δ Proportionality Thm:

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Example If $\overline{BE} \parallel \overline{CD}$, then $\frac{AB}{BC} = \frac{AE}{ED}$.

Converse of Triangle Proportionality Theorem

If a line intersects two sides of a triangle and separates the sides into proportional corresponding segments, then the line is parallel to the third side of the triangle.

Example If $\frac{AE}{EB} = \frac{CD}{DB}$, then $\overline{AC} \parallel \overline{ED}$.

<u>∆ Midsegment Thm:</u>

A midsegment of a triangle is parallel to one side of the triangle, and its length is one half the length of that side.

Example If J and K are midpoints of \overline{FH} and \overline{HG} , respectively, then $\overline{JK} \parallel \overline{FG}$ and $JK = \frac{1}{2}FG$.

In $\triangle RST$, $\overline{RT} \parallel \overline{VU}$, SV = 3, VR = 8, and UT = 12. Find SU.

B. In the figure, \overline{DE} and \overline{EF} are midsegments of $\triangle ABC$. Find *FE*.

C. In the figure, \overline{DE} and \overline{EF} are midsegments of $\triangle ABC$. Find $m \angle AFE$.

MAPS In the figure, Larch, Maple, and Nuthatch Streets are all parallel. The figure shows the distances in between city blocks. Find *x*.

Corollaries

Proportional Parts of Parallel Lines

If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally.

Example If $\overline{AE} \parallel \overline{BF} \parallel \overline{CG}$, then $\frac{AB}{BC} = \frac{EF}{FG}$.

Congruent Parts of Parallel Lines

If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

Example If $\overline{AE} \parallel \overline{BF} \parallel \overline{CG}$, and $\overline{AB} \cong \overline{BC}$, then $\overline{EF} \cong \overline{FG}$.

