7.4 Parallel lines and Proportional Parts

\triangle Proportionality Thu:

If a line is parallel to one side of a triangle and intersects the other two sides, then it divides the sides into segments of proportional lengths.

Example If $\overline{B E} \| \overline{C D}$, then $\frac{A B}{B C}=\frac{A E}{E D}$.

Converse of Triangle Proportionality Theorem

If a line intersects two sides of a triangle and separates the sides into proportional corresponding segments, then the line is parallel to the third side of the triangle.
Example If $\frac{A E}{E B}=\frac{C D}{D B}$, then $\overline{A C} \| \overline{E D}$.

Δ Midsegment The:
A midsegment of a triangle is parallel to one side of the triangle, and its length is one half the length of that side.

Example If J and K are midpoints of $\overline{F H}$ and $\overline{H G}$, respectively, then $\overline{J K} \| \overline{F G}$ and $J K=\frac{1}{2} F G$.

In $\triangle R S T, \overline{R T} \| \overline{V U}, S V=3, V R=8$, and $U T=12$. Find $S U$.

In $\triangle D E F, D H=18, H E=36$, and $D G=\frac{1}{2} G F$.
Determine whether $\overline{G H} \| \overrightarrow{F E}$. Explain.

$$
\begin{aligned}
& \frac{.5 x}{x}=\frac{18}{36} \\
& 18 x=18 x \sigma \text { sides are proportional } \\
& \text { yes }
\end{aligned}
$$

A. In the figure, $\overline{D E}$ and $\overline{E F}$ are midsegments of $\triangle A B C$. Find $A B$.

B. In the figure, $\overline{D E}$ and $\overline{E F}$ are midsegments of $\triangle A B C$. Find $F E$.

C. In the figure, $\overline{D E}$ and $\overline{E F}$ are midsegments of $\triangle A B C$. Find $m \angle A F E$.

MAPS In the figure, Larch, Maple, and Nuthatch Streets are all parallel. The figure shows the distances in between city blocks. Find x.

$$
\begin{aligned}
\frac{26}{x} & =\frac{13}{16} \\
416 & =13 x \\
32 & =x
\end{aligned}
$$

ALGEBRA Find x and y.

$$
\begin{array}{rc}
3 x-7=x+5 & 9 y-2=6 y+4 \\
2 x=12 & 3 y=6 \\
x=6 & y=2
\end{array}
$$

Corollaries

Proportional Parts of Parallel Lines

If three or more parallel lines intersect two transversals, then they cut off the transversals proportionally.
Example If $\overline{A E}\|\overline{B F}\| \overline{C G}$, then $\frac{A B}{B C}=\frac{E F}{F G}$.

Congruent Parts of Parallel Lines

If three or more parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

Example If $\overline{A E}\|\overline{B F}\| \overline{C G}$, and $\overline{A B} \cong \overline{B C}$,
 then $\overline{E F} \cong \overline{F G}$.

