CCSS Goals:

You will use the precise definition of a rectangle and prove its properties.

You will recognize and apply properties of rectangles. You will determine whether parallelograms are rectangles. MP 1, 3, 6, 7

6.4 Rectangles

- <u>Rectangle</u>: a quadrilateral with 4 right \angle 's.
- 1. Given rectangle ABCD. Prove that rectangle ABCD is a parallelogram. Sing all rt. Ls are =, opp L's are =, so it is a parallelogram.
- 2. Since it is a parallelogram, then it has all of the parallelogram's properties. Look at the quadrilateral checklist and see if you can prove if a rectangle has any other properties besides that of a

parallelogram.		
rect ABCD	given	
BC = AD	opp sides f in a rect	A
20300	reflexive	ti H B
LADC, LBCD are rtLs	duf å rect	
LADE LOCD	all yt is	D
DADC=DBC	D SAS	
AC = BD	CPCTC	

- If the quadrilateral has 4 right angles, then it is a rectangle.
- If the diagonals are \cong , the quadrilateral is a rectangle.

Prove whether or not the following parallelogram is a rectangle:

ABCD is a rectangle.

If AC = 2x + 13 and DB = 4x - 1, find x. 2x+13=4x-1 $\frac{14 = 2x}{7 = x}$

Ex. 2

If
$$AE = 3x + 3$$
 and $EC = 5x - 15$, find AC .
 $3x + 3 = 5x - 15$
 $18 = 2x$
 $9 = x$
A $C = 30 + 30 = 40$

EX. 3

If
$$m \angle DAC = 2x + 4$$
 and $m \angle BAC = 3x + 1$, find x.
 $2 \times + 4 + 3 \times + 1 = 90$
 $5 \times + 5 = 90$
 $5 \times = 85$
Ex. 4
 $x = 17$

PRST is a rectangle. Find each measure if $m \angle 1 = 50$.

Goals:

You can use the precise definition of a rectangle and prove its properties.

You can recognize and apply properties of rectangles.

You can determine whether parallelograms are rectangles.

Homework:

6.4 pg. 422 #10, 12, 13-19odd, 20, 22, 23, 26-31

