
6.3 Tests for Parallelograms

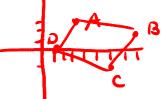
If you need to determine if a quadrilateral is a parallelogram, using points, how could you use the:

a.) Slope formula? opp sides // (same slope) b.) Distance formula? opp sides = opp sides = and // c.) Slope and distance formula? / pair

 \sim

For example: Determine whether the quadrilateral is a parallelogram. Justify your answer using the given formula. A(3,3), B(8,2), C(6,-1), D(1,0)

a.)Slope Formula


AB→-15	AD72
BC→ <u>3</u> 2	yes
$CO \rightarrow -\frac{1}{5}$	jez
b.)Distance Form	
•	AD= 13
$BC = \sqrt{13}$	yes
$CD = \sqrt{26}$	J

c.) Slope and distance formula

Write a coordinate proof for the following statement. If a quadrilateral is a parallelogram, then the opposite sides are congruent.

Using the distance for mula,

$$0L = \sqrt{(2tf-f)^2 + (g-q)^2} = \sqrt{2^2} = 2$$

 $BD = \sqrt{(2-0)^2 + (g-0)^2} = \sqrt{2^2} = 2$
 $Bo = \sqrt{(2-0)^2 + (g-0)^2} = \sqrt{f^{2+}q^2}$
 $DL = \sqrt{(2tf-g)^2 + (g-g)^2} = \sqrt{f^{2+}q^2}$
 $DL = \sqrt{(2tf-g)^2 + (g-g)^2} = \sqrt{f^{2+}q^2}$
Since my opposite sides are
equal, they are congruent.
 $(z,0)$

