6.2 Parallelograms

Parallelogram: quadrilateral with parallel opposite sides

Properties:

Theorem	Ex.	Picture
Opp. Sides of \square Are \cong	$\begin{aligned} & J K \cong \overline{M L} \\ & \sqrt[J M]{ } \cong \overline{K L} \end{aligned}$	
Opp. \angle 's of \square Are \cong	$\begin{aligned} & L J \cong L L \\ & L M \cong \angle K \end{aligned}$	
Cons. \angle 's in \square Are supplementary	$\begin{aligned} & m \angle J+m \angle M=180, m \\ & m \angle J+m \angle k=180, m \end{aligned}$	$\angle K+m \angle L=180$, $\angle L+m \angle M=180$
If \square has $1 \mathrm{rt} . \angle$, it has 4 rt . 's	$1 f m L J=90$, then $m \angle K=m \angle M=m \angle L=90$	
The diagonals of a \square Bisect each other	$\begin{aligned} & \sqrt{B \cong} \cong \overline{B L} \\ & \overline{M B} \cong \overline{B K} \end{aligned}$	
Diagonals separate/ $\text { Into } 2 \cong \Delta^{\prime} \text { s }$	$\triangle M J K \cong \triangle K L M$	

Ex. 1

Quadrilateral $L M N P$, is a parallelogram. Find

$$
\begin{aligned}
& 2 y-5=y+4 \\
& -y-y
\end{aligned}
$$

$$
\begin{gathered}
y-5=4 \\
+5+5
\end{gathered}
$$

$$
\begin{gathered}
1+5 \\
y=9
\end{gathered}
$$

Ex. 2 What are the coordinates of the intersection of the diagonals of parallelogram MNPR with vertices $M(-3,0), N(-1,3), P(5,4)$, and $R(3,1)$?
miclpt

$$
\left(\begin{array}{cc}
m_{1} \text { clpt } \\
(-3+5 \\
2 & \frac{0+4}{2}
\end{array}\right)=(1,2)
$$

