Goals aligned to the Common Core State Standards:

- You will identify and use perpendicular bisectors, angle bisector, medians, and altitudes in triangles.
- You will use the perpendicular bisector theorem and the centroid theorem.
- MP 1, 2, 5, 7

5.1 & 5.2 Bisectors, Medians, and Altitudes of Triangles

Point of Concurrency

REMEMBER:

Perpendicular Bisector

- Creates 90
- Goes through midpoint
- Point on the \perp bisector is
- Cequidistant from the endpoints of the segment.

<u>Median</u>

- Goes through midpoint, vertex
- Centroid splits lines 1/3 and 2/3

Angle Bisector

• Splits angle in two \cong parts

<u>Altitude</u>

- Goes through Vertex
- Creates 90

ALGEBRA In $\triangle DEF$, \overline{GI} is a perpendicular bisector.

7. Find x if EH = 16 and FH = 6x - 5.

$$16 = 6 \times -5$$

 $\frac{21}{6} = 6 \times \frac{1}{6}$
 $\frac{21}{6} = \times \frac{1}{6}$

EXAMPLE 1 Use the Centroid Theorem

In $\triangle XYZ$, *P* is the centroid and *YV* = 12. Find *YP* and *PV*.

$$\gamma p = 2/3 \cdot 12 = 8$$

 $P_{1} = 1/2 \cdot 12 = 4$

ALGEBRA In $\triangle PRS$, \overline{PT} is an altitude and \overline{PX} is a median.

5. Find RS if RX =
$$x + 7$$
 and SX = $3x - 11$
 $3x - 11 + 2x + 7$
 $x - 6$ and $m \angle PTR = 8x - 6$.
 $x - 6 = 90$
 $+ 16 + 16$
 $3x - 12$
 $x - 6 = 90$
 $x - 72$
 x

ALGEBRA In $\triangle DEF$, \overline{GI} is a perpendicular bisector.

7. Find x if
$$herefore x = 16$$
 and $herefore x = 6x - 5$.

$$\frac{14 = 6 \times - 5}{21 = \frac{6 \times 5}{6}}$$

Goals aligned to the Common Core State Standards:

- You can identify and use perpendicular bisectors, angle bisector, medians, and altitudes in triangles.
- You can use the perpendicular bisector theorem and the centroid theorem.

Homework:

5.1/5.2 Altitude, Median, Angle bisector, perpendicular bisector wkst,

centroid wkst

