

• Angle-Side-Angle Congruence Postulate (ASA): If two angles and the **included** side of one Δ are \cong to 2 angles and the **included** side of another Δ , then the Δ 's are \cong .

• Angle-Angle-Side Congruence Postulate (AAS): If 2 angles and a **non-included** side of one Δ are \cong to the corresponding 2 angles and side of a second Δ , then the Δ 's are \cong .

Given: \overline{CP} bisects $\angle BCR$ and $\angle BPR$

Prove: $\triangle BCP \cong \triangle RCP$

CP bisects LBCRd LBPR	given
O CP = CP	reflexive prop

LBCP=LRCP duf of bisector
LBPC=LRPC

ASA

ASA

DBCP = DRCP

Given: $\angle EAD \cong \angle EBC$ and $\overline{AD} \cong \overline{BC}$

Prove: $\overline{AE} \cong \overline{BE}$

D LEAD=LEBC GIVEN

D AD= BC

2E=LE

DBCE=DADE

AAS

AE=BE

CPCTC

Theorem 4.9 Hypotenuse-Leg Congruence

If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.

Abbreviation HL