- You will find the slope and use it to identify parallel and perpendicular lines.

Slope

- Definition: $\frac{\text { rate }}{y_{2}-y_{1}}$ change
- Another way to find:_ $\frac{\text { rise }}{\text { run }}$
- Example: $m=2$

Ostulates

- Two nonvertical lines have the same slope iffy they are parallel.
- Two nonvertical lines are perpendicular iff their product of their slopes is -1 .

$$
-\frac{3}{1} \cdot \frac{1}{3}=-\frac{3}{3}=-1
$$

Examples:

- If the slope of a line is -3 , what is the slope of the line parallel to it? _-3
- If the slope of a line is $\frac{2}{7}$, what is the slope of the line parallel to it? $\frac{2}{7}$
- If the slope of a line is $\frac{-3}{1}$, what is the slope of the line perpendicular to it? $\frac{1}{3}$
- If the slope of a line is $\frac{2}{7}$, what is the slope of the line perpendicular to it? $\frac{-\frac{7}{2}}{}$

Example 1 Find the slope of a line

 parallel to the line containing $A(-3,4)$0 and $B(2,5)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{5-4}{2++3}=\frac{1}{5}
$$

- Find the slope of each line in the picture to the right.

$$
\frac{4}{3}-\frac{2}{5} \quad-\frac{2}{5}=\frac{-2}{5}=\frac{2}{-5}
$$

- Determine whether $\overleftrightarrow{M N}$ and $\overleftrightarrow{R S}$ are parallel, perpendicular, or neither.

1. $M(0,3), N(2,4), R(2,1), S(8,4)$

Slope $\overrightarrow{M N}=\frac{4-3}{2-0}=\left(\frac{1}{2}\right)$

- Graph the line that contains $\mathrm{Q}(5,1)$ and is parallel to $\overleftrightarrow{M N}$ with $\mathrm{M}(-2,4)$ and $\mathrm{N}(2,1)$.

- Graph the line that contains $\mathrm{Q}(5,1)$ and is perpendicular to $\overleftrightarrow{M N}$ with $\mathrm{M}(-2,4)$ and $\mathrm{N}(2,1)$ on the graph $\frac{3}{\text { above } \frac{3}{4}}=-\frac{3}{4}$

Create the line perpendicular to l through B. Then find the distance from B to l.

- Goals:
- You can find the slope and use it to identify parallel and perpendicular lines.

3.3 Slopes of Lines Worksheet

