22.7 \& 2.8 = Proving Segment and Angle Relationships

Goals:
You will prove theorems involving segment addition and congruence.
You will prove theorems involving supplementary, complementary, congruent and right angles.

BADGE Jamie is designing a badge for her club. The length of the top edge of the badge is equal to the length of the left edge of the badge. The top edge of the badge is congruent to the right edge of the badge, and the right edge of the badge is congruent to the bottom edge of the badge. Prove that the bottom edge of the badge is congruent to the left edge of the badge.

Given: $\quad W Y=Y Z$
$\overline{Y Z} \cong \overline{X Z}$

$$
\overline{X Z} \cong \overline{W X}
$$

Prove: $\overline{W X} \cong \overline{W Y}$

Statements

$$
\begin{aligned}
& w y=y z \\
& \frac{y y}{v} \underline{y}=1
\end{aligned} \text { given }
$$

$$
\begin{aligned}
& \frac{1 z \cong x z}{} \\
& x z \cong w
\end{aligned}
$$

$$
\overline{\omega y \cong \overline{y z}} \text { def of } \cong
$$

$$
\overline{W Y} \cong \overline{x z} \text { subst. }
$$

Theorems
Postulate 2.11 Angle Addition Postulate
D is in the interior of $\angle A B C$ if and only if $m \angle A B D+m \angle D B C=m \angle A B C$.

Supplement Theorem If two angles form a linear pair, then they are supplementary angles. Example $m \angle 1+m \angle 2=180$

2.4 Complement Theorem If the noncommon sides

Theorems
2.6 Congruent Supplements Theorem Angles supplementary to the same angle or to congruent angles are congruent.
Abbreviation $\&$ suppl. to same \angle or $\cong \&$ are \cong.
Example If $m \angle 1+m \angle 2=180$ and $m \angle 2+m \angle 3=180$, then $\angle 1 \cong \angle 3$.
2.7 Congruent Complements Theorem

Angles complementary to the same angle or to congruent angles are congruent.
Abbreviation $\&$ compl. to same \angle or $\cong \angle \neg$ are \cong. Example:

$$
\text { If } m \angle 4+m \angle 5=90 \text { and }
$$

$$
m \angle 5+m \angle 6=90, \text { then } \angle 4 \cong \angle 6
$$

Statements
$\angle 1+\angle 4$ form a limens pair given
$m L 1+m L 4=180$ Suppl. The
$m \angle 1+m \angle 4=m \angle 3+m \angle 1$ subs.
-mL

$$
\begin{aligned}
& m \angle 4=m \angle 3 \text { subtr. } \\
& m \angle 4=m \angle 4 \text { sym } \\
& m \angle 3 \cong \\
& \angle 3=24 \text { def. of } \cong
\end{aligned}
$$

If two angles are vertical angles, then they are congruent.
Abbreviation Vert. \& are \cong.
Example

$$
\angle 1 \cong \angle 3 \text { and } \angle 2 \cong \angle 4
$$

If $\angle 1$ and $\angle \mathbf{2}$ are vertical angles and $m \angle 1=d-32$ and $m \angle 2=175-2 d$, find $m \angle 1$ and $m \angle 2$. Justify each step.

Statements
L1+C2 are vertical L's

Reasons
given

$$
m \angle 1=d-32
$$

$$
m \angle 2=175-2 d
$$

$\angle 1 \cong \angle 2$
$m \angle 1=m \angle 2$

$$
\begin{aligned}
3 d-32 & =175 \\
+32 & +32 \\
\frac{3 d}{3} & =207
\end{aligned}
$$

$$
d=69
$$

$$
m \angle 1=49-32, m \angle 2=175-2.69 \text { subst. }
$$

$$
m \angle 1=37, \quad m \angle 2=37
$$

Theorem
Example

