12.6 Surface Areas and Volumes of Spheres

- Sphere:

Surface Area:

Find the surface area of the sphere to the nearest tenth.

$$
S=4 \pi \cdot 4.5^{2}
$$

Find the surface area of the hemisphere to the nearest tenth.
$\frac{1}{2}$ Sphere + circle top

$$
\begin{align*}
& \frac{1}{2} 4 \pi r^{2}+\pi r^{2} \\
& 2 \pi r^{2}+\pi r^{2}=3 \pi r^{2}=3 \pi \cdot 3.7^{2} \\
& 129.0 \mathrm{~mm}
\end{align*}
$$

of a sphere if the B. Find the surface area of a sphere 10π feet.
circumference of the great circle is 10

$$
\begin{aligned}
& C=10 \pi \\
& C=\pi d \\
& \frac{\pi d}{\pi}=\frac{10 \pi}{\pi} \\
& d=10 \\
& r=5
\end{aligned}
$$

C. Find the surface area of a sphere if the area of the great circle is approximately $\mathbf{2 2 0}$ square meters.

$$
\begin{aligned}
& A=\pi r^{2} \\
& 4 \pi r^{2}
\end{aligned}
$$

- Sphere:

$$
\text { Volume: } \quad V=\frac{4}{3} \pi r^{3}
$$

A. Find the volume a sphere with a great circle circumference of 30π centimeters. Round to the nearest tenth.

B. Find the volume of the hemisphere with a diameter of 6 feet. Round to the nearest tenth.

$$
\begin{aligned}
\frac{4}{3} \pi r^{3} \cdot \frac{1}{2}= & \frac{4^{2}}{63} \pi r^{3} \\
& \frac{2}{3} \cdot \pi \cdot 3^{3}
\end{aligned}
$$

ARCHEOLOGY The stone spheres of Costa Roca were made by forming granodiorite boulders into spheres. One of the stone spheres has a volume of about $36,000 \pi$ cubic inches. What is the diameter of the stone sphere?

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& \frac{36,000 \pi}{\pi}=\frac{\frac{4}{3} \pi r^{3}}{\pi} \\
& \frac{3}{4} \cdot 36,000=\frac{4}{3} r^{3} \cdot \frac{8}{44} \\
& \sqrt[3]{27000}=\sqrt[3]{r^{3}} \\
& 30 i n=r
\end{aligned}
$$

