12.2 Surface Areas of Prisms and Cylinders

Lateral Area:
Sum of the areas of the lateral faces.

$$
\text { (area } w / 0 \text { bases) }
$$

- Prism:
- Lateral Area: $L=\underbrace{P h e r i m h t ~ o f ~ y o u r ~ p r i s m ~}$
- Surface Area: $S=\frac{L}{\pi}+2 \mathbb{R}_{n}$
lateral area
Find the lateral area of the regular hexagonal prism.

$$
L=P h
$$

Find the surface area of the rectangular prism.

$$
\begin{aligned}
& S=L+2 B \\
& S=p \cdot h+2 B \\
& 24 \cdot 12+2 \cdot 366 \mathrm{~cm} 36 \\
& =36 \mathrm{~cm}^{2}
\end{aligned}
$$

right cylinder

base

- Cylinder:
- Lateral Area: $L=2 \pi r_{\text {pk }}^{\text {rad }}$ evadius height of
- Surface Area: $S=2 \pi r h+2 \pi r^{2}$

Find the lateral area and the surface area of the cylinder. Round to the nearest tenth.

$$
\begin{aligned}
L & =2 \pi \cdot 14 \cdot 18 \\
& =1583.4 \mathrm{ft}^{2} \\
S & =1583.4+2 \pi \cdot 14^{2} \\
& =2814.9 \mathrm{ft}^{2}
\end{aligned}
$$

MANUFACTURING A soup can is covered What is the radius of the soup can?

$$
\begin{gathered}
L=2 \pi r h \\
\frac{125.6}{\frac{(2 \pi 8)}{(2 \pi y \cdot r}=\frac{2 \pi}{2 \pi .8}} \\
2.5 i n
\end{gathered}
$$

$$
15.7 .8=125.6
$$

$\frac{2 \pi r}{2 \pi}=\frac{15.7}{2 \pi}$
$r=2.5 \mathrm{in}$

