10.3 Arcs and Chords

Thm:

Words In the same circle or in congruent circles, two minor arcs are congruent if and only if their corresponding chords are congruent.
Example $\overline{F G} \cong \overline{H J}$ if and only if $\overparen{F G} \cong \overparen{H J}$.

Jewelry A circular piece of jade is hung from a chain by two wires around the stone.
$\overline{J M} \cong \overline{K L}$ and $m \widehat{K L}=90$. Find $m \overparen{J M}$.

If a diameter (or radius) of a circle is perpendicular to a chord, then it bisects the chord and its arc.

Example If diameter $\overline{A B}$ is perpendicular to chord $\overline{X Y}$, then $\overline{X Z} \cong \overline{Z Y}$ and $\overparen{X B} \cong \overparen{B Y}$.

The perpendicular bisector of a chord is a diameter (or radius) of the circle.
Example If $\overline{A B}$ is a perpendicular bisector of chord $\overline{X Y}$, then $\overline{A B}$ is a diameter of $\odot C$.

In $\odot G, m \overparen{D E F}=150$. Find $m \overparen{D E}$.

CERAMIC TILE In the ceramic stepping stone below, diameter $\overline{A B}$ is 18 inches long and chord $\overline{E F}$ is 8 inches long. Find $C D . \quad r=9$

$9^{2}=4^{2}+x^{2}$
$81=16+x^{2}$

In the same circle or in congruent circles, two chords are congruent if and only if they are equidistant from the center. $L X=L Y$ if and only if $\overline{F G} \cong \overline{J H}$.

$\ln \odot P, E F=G H=24$. Find $P Q$.

$$
\begin{aligned}
4 x-3 & =2 x+3 \\
-2 x & -2 x \\
2 x-3 & =3 \\
+3 & +3 \\
\frac{2 x}{2} & =\frac{6}{2} \\
x & =3
\end{aligned}
$$

