1. 3 - Distance and Midpoints

Goals Aligned to Common Core State Standards:

- You will identify and model distance, midpoint, and segment bisector.
- You will find the midpoint on a line segment and the distance between two points.
- You will construct a line that bisects a segment to find the midpoint of a given segment.

Distance

- Length or Measure of two endpoints
- The distance from A to B is the same distance as B to A.

Distance Formula on a coordinate plane $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

Use the Distance Formula to find the distance between the pair of points.
3. $A(-2,-1), B(1,3)$

$$
d=\sqrt{\left(1-2+(3-1)^{2}\right.}
$$

$$
d=\sqrt{(3)^{2}+(4)^{2}}
$$

$$
d=\sqrt{25}
$$

$$
\begin{aligned}
& \text { 4.M(1,-2),N(9,13)} \\
& d=\sqrt{(1-9)^{2}+(-2-13)^{2}} \\
& d=\sqrt{(-8)^{2}+(-15)^{2}} \\
& d=\sqrt{64+225}
\end{aligned}
$$

$$
d=5
$$

- The midpoint of a segment is the point in the middle of the 2 endpoints The ratio of a midpoint is: \qquad $1: 2$
- Segment Bisector:
\qquad cuts into $2=$ parts

Midpoint (coordinate plane)

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Why does the midpoint formula divide by 2 ?
dividing by 2 finds the middle
Find the coordinates of the midpoint of a segment having the given endpoints.
7. $R(-12,8), S(6,12)$

$$
\text { 8. } P(-2,4), Q(4,1)
$$

$$
\left.\left(\frac{12+6}{2}, \frac{8+12}{2}\right) \quad \frac{(-2-4)}{2}\right)=1(1,2.5)
$$

$$
\frac{-6}{2} \cdot \frac{20}{2}=(-3,10) \quad \frac{4-1}{2}=2.5
$$

Simplify Radicals
1.) $\sqrt{20}$
2.) $\sqrt{30}$

$$
\frac{\sqrt{4 \sqrt{5}}}{2 \sqrt{5}}
$$

(3) 10
(5)(2)
3.) $\sqrt{40}$

$$
\begin{array}{cc}
\begin{array}{l}
\text { 4.) } \sqrt{72} \\
\sqrt{36 \sqrt{2}} \\
6 \sqrt{2}
\end{array} & \begin{array}{c}
9 \sqrt{8} \\
3 \sqrt{8} \\
3 \sqrt{4 \sqrt{2}} \\
3 \cdot 2 \sqrt{2} \\
6 \sqrt{2}
\end{array}
\end{array}
$$

